79 research outputs found

    Petroleum hydrocarbon rhizoremediation and soil microbial activity improvement via cluster root formation by wild proteaceae plant species

    Get PDF
    Rhizoremediation potential of different wild plant species for total (aliphatic) petroleum hydrocarbon (TPH)-contaminated soils was investigated. Three-week-old seedlings of Acacia inaequilatera, Acacia pyrifolia, Acacia stellaticeps, Banksia seminuda, Chloris truncata, Hakea prostrata, Hardenbergia violacea, and Triodia wiseana were transplanted in a soil contaminated with diesel and engine oil as TPH at pollution levels of 4,370 (TPH1) and 7,500 (TPH2) mg kg−1, and an uncontaminated control (TPH0). After 150 days, the presence of TPH negatively affected the plant growth, but the growth inhibition effect varied between the plant species. Plant growth and associated root biomass influenced the activity of rhizo-microbiome. The presence of B. seminuda, C. truncata, and H. prostrata significantly increased the TPH removal rate (up to 30% compared to the unplanted treatment) due to the stimulation of rhizosphere microorganisms. No significant difference was observed between TPH1 and TPH2 regarding the plant tolerance and rhizoremediation potentials of the three plant species. The presence of TPH stimulated cluster root formation in B. seminuda and H. prostrata which was associated with enhanced TPH remediation of these two members of Proteaceae family. These results indicated that B. seminuda, C. truncata, and H. prostrata wild plant species could be suitable candidates for the rhizoremediation of TPH-contaminated soil

    Thermal stability of biochar and its effects on cadmium sorption capacity

    Get PDF
    In this study, the thermal stability of a wood shaving biochar (WS, 650 °C), a chicken litter biochar (CL, 550 °C) and an activated carbon (AC, 1100 °C) were evaluated by combustion at 375 °C for 24 h to remove the labile non-carbonized organic matter. Results showed that WS and CL biochars were not thermally stable and can lose most of the organic C during combustion. The combusted WS and CL biochars retained considerable amounts of negative charge and displayed higher sorption for Cd (from 5.46 to 68.9 mg/g for WS and from 48.5 to 60.9 mg/g for CL). The AC retained 76.5% of its original C and became more negatively chargely after combustion, but its sorption for Cd slightly decreased (from 18.5 to 14.9 mg/g). This study indicated that after potential burning in wildfires (200 - 500 °C), biochars could have higher sorption capacity for metals by remaining minerals

    Pyrogenic carbon in Australian soils

    Get PDF
    Pyrogenic carbon (PyC), the combustion residues of fossil fuel and biomass, is a versatile soil fraction active in biogeochemical processes. In this study, the chemo-thermal oxidation method (CTO-375) was applied to investigate the content and distribution of PyC in 30 Australian agricultural, pastoral, bushland and parkland soil with various soil types. Soils were sampled incrementally to 50 cm in 6 locations and at another 7 locations at 0–10 cm. Results showed that PyC in Australian soils typically ranged from 0.27–5.62 mg/g, with three Dermosol soils ranging within 2.58–5.62 mg/g. Soil PyC contributed 2.0–11% (N = 29) to the total organic carbon (TOC), with one Ferrosol as high as 26%. PyC was concentrated either in the top (0–10 cm) or bottom (30–50 cm) soil layers, with the highest PyC:TOC ratio in the bottom (30–50 cm) soil horizon in all soils. Principal component analysis - multiple linear regression (PCA-MLR) suggested the silt-associated organic C factor accounted for 38.5% of the variation in PyC. Our findings suggest that PyC is an important fraction of the TOC (2.0–11%, N = 18) and chemically recalcitrant organic C (ROC) obtained by chemical C fractionation method accounts for a significant proportion of soil TOC (47.3–84.9%, N = 18). This is the first study comparing these two methods, and it indicates both CTO-375 and C speciation methods can determine a fraction of recalcitrant organic C. However, estimated chemically recalcitrant organic carbon pool (ROC) was approximately an order of magnitude greater than that of thermally stable organic carbon (PyC)

    Effects of acidic and neutral biochars on properties and cadmium retention of soils

    Get PDF
    In this study, an acidic biochar and a neutral biochar were applied at 5 wt% into two soils for an 11-month incubation experiment. One Ferrosol soil (Ba) was slightly acidic with low organic matter and the other Dermosol soil (Mt) was slightly alkaline with high organic matter. The acidic (pH = 3.25) wood shaving (WS) biochar had no marked impact on nutrient levels, cation exchange capacity (CEC), pH and acid neutralisation capacity (ANC) of either soil. By contrast, the neutral (pH = 7.00) chicken litter (CL) biochar significantly increased major soluble nutrients, pH, ANC of soil Ba. In terms of C storage, 87.9% and 69.5% WS biochar-C can be sequestrated as TOC by soil Ba and Mt, respectively, whereas only 24.0% of CL biochar-C stored in soil Ba and negligible amount in Mt as TOC. Biochars did not have significant effects on soil sorption capacity and sorption reversibility except that CL biochar increased sorption of soil Ba by around 25.4% and decreased desorption by around 50.0%. Overall, the studied acidic C rich WS biochar held little agricultural or remedial values but was favourable for C sequestration. The neutral mineral rich CL biochar may provide short-term agricultural benefit and certain sorption capacities of lower sorption capacity soils, but may be unlikely to result in heightened C sequestration in soils. This is the first study comprehensively examining functions of acidic and neutral biochars for their benefits as a soil amendment and suggests the importance of pre-testing biochars for target purposes prior to their large scale production

    Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater

    Get PDF
    Contaminant containment measures are often necessary to prevent or minimize offsite movement of contaminated materials for disposal or other purposes when they can be buried or left in place due to extensive subsurface contamination. These measures can include physical, chemical, and biological technologies such as impermeable and permeable barriers, stabilization and solidification, and phytostabilization. Contaminant containment is advantageous because it can stop contaminant plumes from migrating further and allow for pollutant reduction at sites where the source is inaccessible or cannot be removed. Moreover, unlike other options, contaminant containment measures do not require the excavation of contaminated substrates. However, contaminant containment measures require regular inspections to monitor for contaminant mobilization and migration. This review critically evaluates the sources of persistent contaminants, the different approaches to contaminant remediation, and the various physical-chemical-biological processes of contaminant containment. Additionally, the review provides case studies of contaminant containment operations under real or simulated field conditions. In summary, contaminant containment measures are essential for preventing further contamination and reducing risks to public health and the environment. While periodic monitoring is necessary, the benefits of contaminant containment make it a valuable remediation option when other methods are not feasible

    The role of expertise in dynamic risk assessment: A reflection of the problem-solving strategies used by experienced fireground commanders

    Get PDF
    Although the concept of dynamic risk assessment has in recent times become more topical in the training manuals of most high risk domains, only a few empirical studies have reported how experts actually carry out this crucial task. The knowledge gap between research and practice in this area therefore calls for more empirical investigation within the naturalistic environment. In this paper, we present and discuss the problem solving strategies employed by sixteen experienced operational firefighters using a qualitative knowledge elicitation tool — the critical decision method. Findings revealed that dynamic risk assessment is not merely a process of weighing the risks of a proposed course of action against its benefits, but rather an experiential and pattern recognition process. The paper concludes by discussing the implications of designing training curriculum for the less experienced officers using the elicited expert knowledge

    Post tracheostomy and post intubation tracheal stenosis: Report of 31 cases and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe post tracheostomy (PT) and post intubation (PI) tracheal stenosis is an uncommon clinical entity that often requires interventional bronchoscopy before surgery is considered. We present our experience with severe PI and PT stenosis in regards to patient characteristics, possible risk factors, and therapy.</p> <p>Methods</p> <p>We conducted a retrospective chart review of 31 patients with PI and PT stenosis treated at Lahey Clinic over the past 8 years. Demographic characteristics, body mass index, co-morbidities, stenosis type and site, procedures performed and local treatments applied were recorded.</p> <p>Results</p> <p>The most common profile of a patient with tracheal stenosis in our series was a female (75%), obese (66%) patient with a history of diabetes mellitus (35.4%), hypertension (51.6%), and cardiovascular disease (45.1%), who was a current smoker (38.7%). Eleven patients (PI group) had only oro-tracheal intubation (5.2 days of intubation) and developed web-like stenosis at the cuff site. Twenty patients (PT group) had undergone tracheostomy (54.5 days of intubation) and in 17 (85%) of them the stenosis appeared around the tracheal stoma. There was an average of 2.4 procedures performed per patient. Rigid bronchoscopy with Nd:YAG laser and dilatation (mechanical or balloon) were the preferred methods used. Only 1(3.2%) patient was sent to surgery for re-stenosis after multiple interventional bronchoscopy treatments.</p> <p>Conclusion</p> <p>We have identified putative risk factors for the development of PI and PT stenosis. Differences in lesions characteristics and stenosis site were noted in our two patient groups. All patients underwent interventional bronchoscopy procedures as the first-line, and frequently the only treatment approach.</p

    Comparative values of various wastewater streams as a soil nutrient source

    Get PDF
    In order to assess whether wastewaters from different industries (winery, abattoir, dairy and municipal) could be used safely to irrigate agricultural crops, a pot experiment in glass house was conducted in a sandy clay loam soil (pH = 6.12) from South Australia. Different concentrations (0, 0.05, 5, 25, 50, 75 and 100%) of the wastewaters diluted in an ordinary tap water were applied to soils sown with sunflower and maize seeds, and the effect of these irrigation treatments were evaluated at the early crop growth stages by recording the biomass yields, plant mineral nutrient contents, and also the soil chemical properties. Results showed that the winery effluent reduced the early growth of maize and sunflower when applied without any dilution, but increased yields of both plants when applied at 25% dilution with tap water. At this dilution of the winery wastewater, 80% more dry shoot yield (DSY) of sunflower and 58% more DSY of maize were obtained in comparison to the application of 100% concentration of the wastewater. Abattoir wastewater showed the highest yields at 100% concentration. Furthermore, municipal effluent did not show any inhibitory effect on both the crops. It was observed that metal contents in both the crops were different due to the application of different wastewaters, but did not exceed any toxic level. This study demonstrated that abattoir wastewater as such, and winery and dairy wastewaters at appropriate dilutions could be used for irrigation in agricultural fields to enhance crop productivity

    WISCONSIN DESERT -The Sand Barrens of the Lower Wisconsin River

    No full text
    Includes Color Maps, Airphotos, Photographs.When Glacial Lake Wisconsin drained at the end of the last ice age, it catastrophicly flooded the Lower Wisconsin River Valley. This flooding deposited massive amounts of glacial sand, which then, through a process of down cutting, formed terraces along the river. Today, there are areas on these terraces that have desert-like features. These places, called sand barrens, consist of areas dominated by open sand, occasional xerophylic plants, prairie grasses, and scattered trees. What makes the sand barrens so unique is that they provide habitat for species of plants and animals found nowhere else in Wisconsin. These species are adapted to the extreme environmental conditions of the sand barrens, which is a consequence of their sandy, nutrient poor soil combined with the effects of agricultural use in the past. We are exploring this interesting mix of natural conditions and human land use history that characterize sand barrens of the Lower Wisconsin River. We look at how the two have contributed to the landscape we see today. We are focusing on five sites with sand barrens: Blue River Sand Barrens, Spring Green Preserve, Arena Pines and Sand Barrens, Gotham Jack Pine Barrens, and Woodman Lake Sand Prairie. These areas are now designated State Natural Areas and owned by the Wisconsin DNR or Nature Conservancy. We examine the histories of these sites to find similarities and differences among them that will help shed light on their creation and how they respond to changes in land use

    Comparative sorption and mobility of Cr(III) and Cr(VI) species in a range of soils: implications to bioavailability

    No full text
    The sorption of chromium (Cr) species to soil has become the focus of research as it dictates the bioavailability and also the magnitude of toxicity of Cr. The sorption of two environmentally important Cr species [Cr(III) and Cr(VI)] was examined using batch sorption, and the data were fitted to Langmuir and Freundlich adsorption isotherms. The effects of soil properties such as pH, CEC, organic matter (OM), clay, water-extractable SO4 2– and PO4 3–, surface charge, and different iron (Fe) fractions of 12 different Australian representative soils on the sorption, and mobility of Cr(III) and Cr(VI) were examined. The amount of sorption as shown by K f was higher for Cr(III) than Cr(VI) in all tested soils. Further, the amount of Cr(III) sorbed increased with an increase in pH, CEC, clay, and OM of soils. Conversely, the chemical properties of soil such as positive charge and Fe (crystalline) had a noticeable influence on the sorption of Cr(VI). Desorption of Cr(VI) occurred rapidly and was greater than desorption of Cr(III) in soils. The mobility of Cr species as estimated by the retardation factor was higher for Cr(VI) than for Cr(III) in all tested soils. These results concurred with the results from leaching experiments which showed higher leaching of Cr(VI) than Cr(III) in both acidic and alkaline soils indicating the higher mobility of Cr(VI) in a wide range of soils. This study demonstrated that Cr(VI) is more mobile and will be bioavailable in soils regardless of soil properties and if not remediated may eventually pose a severe threat to biota
    • …
    corecore